It is all too often necessary to augment the power supply of an existing electronic circuit because exactly the voltage that you need is missing. The circuit presented here may provide a solution in a number of cases, since it can be used to convert a single-ended supply voltage into a balanced set of supply voltages. That’s not so remarkable by itself, but the special feature of this circuit is that this is accomplished without using difficult to obtain, exotic ICs. All of the components used in the circuit are ones that every electronics hobbyist is likely to have in a drawer somewhere.
The heart of the circuit is formed by an ‘old reliable’ 555 timer, which is wired here as a free-running oscillator with a frequency of approximately 160 kHz. The oscillator is followed by two voltage-doubling rectifiers, consisting of C1, D1, D2, C3 and C7, D3, D4, C5. They are followed in turn by two voltage regulators to stabilise the positive and negative voltages generated in this manner. The duty cycle of the 555 is set to approximately 50 percent using R1 and R2. The square-wave signal at the output of the timer IC has a DC offset, which is eliminated by C4 and R3.

The amplitude of the output signal from the 555 is approximately equal to the supply voltage less 1.5 V, so with a 12-V input voltage, there will be a square-wave signal on pin 3 with an amplitude of approximately 10.5 Vpp. With respect to ground (across R3), this is this +5 V / –5 V. Although this yields a symmetric voltage, its positive and negative amplitudes are somewhat too small and it is not stabilised. In order to split the square-wave signal into sufficiently large positive and negative amplitudes, C1/D2 are added for the positive voltage, causing the positive half to be doubled in amplitude.
For the negative half, the same effect is achieved using C7/D3. Following this, the two signals are smoothed by D1/C3 and D4/C5, respectively. Both voltages are now high enough to be input to normal 5-V voltage regulators, yielding symmetric +5V and –5V supply voltages at the output. The input voltage does not have to be regulated, although it must lie between +11 V and +18 V. The maximum output current is ±50 mA with an input voltage of 12 V. This circuit is an excellent choice for generating auxiliary voltages, such as supply voltages for low-power opamps. Naturally, the fact that the converter can be powered from the in-vehicle voltage of a car is a rather attractive feature.
The heart of the circuit is formed by an ‘old reliable’ 555 timer, which is wired here as a free-running oscillator with a frequency of approximately 160 kHz. The oscillator is followed by two voltage-doubling rectifiers, consisting of C1, D1, D2, C3 and C7, D3, D4, C5. They are followed in turn by two voltage regulators to stabilise the positive and negative voltages generated in this manner. The duty cycle of the 555 is set to approximately 50 percent using R1 and R2. The square-wave signal at the output of the timer IC has a DC offset, which is eliminated by C4 and R3.
555 DC/DC Converter Circuit Diagram
The amplitude of the output signal from the 555 is approximately equal to the supply voltage less 1.5 V, so with a 12-V input voltage, there will be a square-wave signal on pin 3 with an amplitude of approximately 10.5 Vpp. With respect to ground (across R3), this is this +5 V / –5 V. Although this yields a symmetric voltage, its positive and negative amplitudes are somewhat too small and it is not stabilised. In order to split the square-wave signal into sufficiently large positive and negative amplitudes, C1/D2 are added for the positive voltage, causing the positive half to be doubled in amplitude.
For the negative half, the same effect is achieved using C7/D3. Following this, the two signals are smoothed by D1/C3 and D4/C5, respectively. Both voltages are now high enough to be input to normal 5-V voltage regulators, yielding symmetric +5V and –5V supply voltages at the output. The input voltage does not have to be regulated, although it must lie between +11 V and +18 V. The maximum output current is ±50 mA with an input voltage of 12 V. This circuit is an excellent choice for generating auxiliary voltages, such as supply voltages for low-power opamps. Naturally, the fact that the converter can be powered from the in-vehicle voltage of a car is a rather attractive feature.
Author: L. de Hoo - Copyright: Elektor Electronics














Using an adjustable power supply, a frequency range from 10 kHz to 20 kHz can therefore be covered. There are two RC networks at the output of the test circuit, a high-pass filter and a low-pass filter, acting as simple phase shifters. At the basic frequency of 15 kHz these provide a total phase difference of 90 degrees, corresponding exactly to the typical situation at the output of an SDR receiver circuit using an I-Q mixer: signals at the same frequency but differing in phase. To test the soundcard we need an SDR program running on the PC as well as the circuit of Figure 1. Suitable software includes SDradio (available for download from http://digilander.libero.it/i2phd/sdradio/).
The results obtained using an I-Q receiver were grim: frequencies all the way out to 100 kHz were wrapped into the audible range, resulting in bubbling, hissing and whistling. In theory it would be possible to add an anti-aliasing filter to the output of the receiver to allow use with soundcards that are not equipped with such a filter. In practice, however, it is not easy to achieve the required sharp cutoff and symmetry between the two channels. A typical soundcard has a low pass filter set at 24 kHz which by 27 kHz is already attenuating the signal by some 60 dB. This is only practical using digital fi lters; an adjustable analogue circuit to achieve this performance would be so complex that the simplicity benefits of SDR receiver technology would entirely evaporate.

.jpg)











